Binding and Signal Profiling of Full and Partial M4 Agonists

Sokhom S. Pin,¹ Angela Wonsey-Quinn,¹ Deborah L. Smith,¹ Leonard Te,1 May Fern Toh,¹ Hanh Nho Nguyen,¹ Philip Iredale¹

¹Cerevel Therapeutics, Cambridge, MA, USA **Presenting Author:** Sokhom S. Pin; Sokhom.pin@cerevel.com

SUMMARY

- A large number of selective M4 ligands were profiled for their binding and functional activity at M4, as well as for their functional selectivity at M1, M2, M3, and M5
- Shown here is a set of representative compounds that include full agonists, partial agonists (<80% maximum effect [E_{max}]), antagonists, and agonist PAMs
- Full agonists are functionally balanced between the G-protein and the β -arrestin pathway while partial agonists and agonist PAMs are biased toward the G-protein pathway
- Binding profiles suggest that compounds with varying binding affinities have similar K_{off} with a broad range of K_{on}, as well as varying preferences for orthosteric versus allosteric sites

INTRODUCTION

- coupled receptor (GPCR) superfamily
- including the striatum, the cortex, and the hippocampus

OBJECTIVE

multiple time points

RESULTS

- compound shown in **Figure 1**)
- constants (K_{on})

Table 1. M4 Binding Profile With [³H] N-Methyl Scopolamine

Compound ID	Binding				
	Equilbrium K _i (_{or} K _d) ([³ H]NMS)	k _{on}	k _{off}	τ	Kinetics K _d (=k _{off} /k _{on})
	nM	M ⁻¹ min ⁻¹	min ⁻¹	min	nM
[³ H]Scopolamine	0.2 ±0.02 (K _d , n=30)	$1.4 \times 10^8 \pm 1.4 \times 10^7$	0.02 ± 0.002	48 ± 4.0	1.5 ± 0.03
Scopolamine	0.33 ± 0.04 (n = 26)				
CV-0000294-00-01	>1,000	$3.2 \times 10^3 \pm 1.0 \times 10^3$	0.05 ± 0.002	21 ± 1.0	1,600 ± 4,400
CV-0000030-00-01	41±8.0	$5.3 \times 10^5 \pm 2.2 \times 10^5$	0.04 ± 0.03	33 ± 19	79 ± 16
CV-0000042-00-01	137 ± 23	$3.1 \times 10^5 \pm 2.2 \times 10^5$	0.07 ± 0.04	20 ±11	290 ± 78
CV-0000071-00-01	9.0±0.13	$1.2 \times 10^6 \pm 1.3 \times 10^5$	0.03 ± 0.002	40 ± 3.9	21 ± 4.4
MK-6884	74 ± 12	<mark>1.8 x 10⁵ ± 3.8 x 10⁴</mark>	0.03 ± 0.007	<mark>36 ± 8.0</mark>	180 ± 73
Trospium Chloride	0.49 ± 0.07	$4.3 \times 10^8 \pm 2.5 \times 10^7$	0.03 ± 0.004	31 ± 4.2	0.44 ± 0.18
Xanomeline	6.0±0.25	$1.4 \times 10^6 \pm 7.5 \times 10^5$	0.02 ± 0.003	49 ± 6.2	20±8.6
Clozapine	23 ± 11	$5.5 \times 10^5 \pm 2.5 \times 10^4$	0.03 ± 0.01	38 ± 8.6	50 ± 9.2
PCS1055 Dihydrochloride	1.0 ± 0.0	$2.0 \times 10^7 \pm 5.2 \times 10^6$	0.01 ± 0.001	98 ± 11	0.5 ± 0.1
Acetylcholine Chloride	>1,000	$\frac{5.1 \times 10^3 \pm 1.3 \times 10^3}{10^3 \times 10^3}$	0.05 ± 0.02	27 ± 12	10,800 ± 6,700
ТВРВ	60 ± 2.0	$1.8 \times 10^5 \pm 5.1 \times 10^4$	0.02 ± 0.002	48 ± 4.0	130 ± 46
CV-0000422-00-01	186 ± 1.0	$4.0 \times 10^4 \pm 5.0 \times 10^3$	0.03 ± 0.002	29 ± 2.0	860 ± 50

Presented at Society for Neuroscience (SfN) November 12-16, 2022 • San Diego, CA, USA

• The M4 muscarinic acetylcholine receptor (mAChR) is one of 5 mAChR subtypes (M1-M5) in the G-protein

• The M4 mAChR is a 7-transmembrane Gai-coupled receptor that is expressed both presynaptically and postsynaptically in neurons, within brain regions associated with psychotic and cognitive functions,

• The aim of this study was to understand the agonism and the binding profile of M4 ligands with different degrees of intrinsic activities by using multiple probes, evaluating different signaling events/pathways, and by performing experiments at steady state, as well as at

METHODS

- Radioligand binding was performed using a classical filtration method
- The G-protein activation assay (GTPgS) was performed with scintillation proximity assay (SPA) technology
- Activation of individual G-proteins, β-arrestin recruitment, and receptor trafficking were evaluated using bioluminescence resonance energy transfer (BRET) technology from **Domain Therapeutics** (Strasbourg, France)
- Second messenger activation was measured using homogenous timeresolved fluorescence ([HTRF]; for cyclic adenosine monophosphate [cAMP]) and with a fluorescent imaging plate reader ([FLIPR]; for Ca²⁺ release)

• Full agonists are functionally balanced between the G-protein and the β -arrestin pathway (representative)

• Partial agonists and ago-positive allosteric modifiers (PAMs) are biased toward the G-protein pathway (representative compound shown in **Figure 2**)

• Using [³H] N-methyl scopolamine ([³H]NMS) as a probe (**Table 1**), compounds with varying binding affinities (K_i) appear to have similar dissociation rate constants (K_{off}) with a broad range of association rate

• Compounds appear to have a varying degree of preference for orthosteric versus allosteric sites (K_i of CV-0000042 against [³H]MK-6884 is >100 nM; it is 16 nM for CV-0000294); see Figure 1A and Figure 2A

Figure 1. Full agonist.

Figure 2. Partial agonist, ago-PAM.

A. Dissociation of [³H]NMS +/- CV-0000294

B. Receptor selectivity

Illustration under authorization of Domain Therapeutica

 $\Delta \log (E_{max}/EC_{50})$