# Evaluation of Darigabat QTc Prolongation in Healthy Volunteers: a Concentration-QTcF Analysis

<u>Marije E. Otto<sup>1,2</sup>,</u> Koshar Safai Pour<sup>1,3</sup>, Joop van Gerven<sup>1,3</sup>, Gabriel Jacobs<sup>1,3</sup>, Michiel van Esdonk<sup>1</sup>, Gina Pastino<sup>4</sup>, Jagan Parepally<sup>4</sup>, Sridhar Duvvuri<sup>4</sup>

<sup>1</sup>Centre for Human Drug Research, Leiden, the Netherlands <sup>2</sup>Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands

# Introduction

- Darigabat (also CVL-865; formerly PF06372865) is a positive allosteric modulator (PAM) that selectively enhances the effect of GABA at a2/a3/a5 subunits while sparing activity at a1
  - → Potential treatment for focal onset epilepsy and anxiety-related disorders
- Single (0.04-100 mg) and multiple (2.5-42.5 BID) oral doses previously investigated in healthy volunteers [1-3]
  - ightarrow Favourable safety and pharmacodynamic profile

<sup>3</sup>Department of Psychiatry, Leiden University Medical Centre (LUMC), Leiden, The Netherlands <sup>4</sup>Cerevel Therapeutics, LLC, Cambridge, MA, USA



# Methods

- Pooled PK and ECG data of 6-100 mg single dose and placebo treatment periods (cross-over) [1]
- Individual mean QTcF values derived from triplicate ECGs and matched to time of PK
- $\rightarrow$  No dose-dependent QTcF prolongation or changes in heart rate up to 100

#### mg

## Aim

Further evaluation of the cardiodynamic effects of darigabat with a concentration-QTcF analysis

### Results

Assumptions: effect on heart rate and adequacy of Fredericia correction

- No effect of darigabat on heart rate (Figure 1A)
- Significant relationship between QTcF and RR interval in the active treatment group (Figure 1B)
  - $\rightarrow$  increased risk of false positive QTcF prolongation



sampling (pre-dose, 1h, 2h, 4h, 8h, 12h, 24h, 48h post-dose)

- $\rightarrow$  639 placebo- and baseline-corrected ( $\Delta\Delta$ ) matched QTcF assessments in 43 subjects
- Application of pre-specified model for conc-QTcF analysis (Eq. 1) [4]
  - → Model assumptions (heart rate, hysteresis, linearity)
  - $\rightarrow$  Linear and (sigmoid) Emax relationships
- Calculate mean and 90% confidence interval of simulated ΔΔQTcF for (therapeutic) concentration range and determine 10 ms threshold concentration

#### Adaption of pre-specified model

- Removal of baseline correction (Eq. 1)
- Non-linear Emax relationship (Eq. 2, Table 1)
- Adequate prediction (Figure 2)
  - → Especially in higher
     concentration range (>60
     ng/mL)



**Figure 1.** Scatter plot of  $\Delta\Delta$ HR vs Darigabat concentrations (A) and vs. RR interval (B) overlaid with a loess smooth line (dashed line, with 95% CI (A)) and a linear regression line (solid line)).

#### Simulated ΔΔQTcF over a clinically relevant concentration range

- Mean ΔΔQTcF of 4.33ms (upper limit
   90%CI: 7.54) at highest dose level (100 mg,
   observed Cmax = 559.3 ng/mL) [1]
- Mean  $\Delta\Delta$ QTcF > 5ms at 946 ng/mL
- Upper limit of 90%Cl > 10ms at 2062ng/mL  $\frac{\widehat{g}}{\underline{g}}$

→ 3.7-fold safety margin at therapeutic dose of 25 mg QD



**Figure 2.** Confidence interval visual predictive check. Median and 80% prediction interval of the data (lines) with simulated 95% confidence interval (colored area).



#### **Equation 1: pre-specified model**

$$\Delta \Delta QTcF = \theta_0 + \theta_1 (QTcF_{i,0} - \overline{QTcF_0}) + \theta_2 * \theta_2$$

Equation 2: final conc-QTcF model

$$\Delta \Delta QTcF = \theta_0 + \frac{\theta_2 E_{MAX} * C}{C + \theta_3 E C_{50}}$$

 $QTcF_{i,0}$ : individual baseline,  $\overline{QTcF}_0$ : population baseline

**Table 1:** Parameter estimates for the final conc-QTcF model

| Parameter (θ)                                                                                                                                                                        | Estimate   | RSE (%) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|
| 0. Intercept (ms)                                                                                                                                                                    | -0.687     | 207.1   |
| 1. Baseline correction                                                                                                                                                               | 0 FIX      | _       |
| 2. Emax (ms)                                                                                                                                                                         | 7.43       | 47.32   |
| 3. $e^{\Theta EC}$ 50 (EC <sub>50</sub> ng/mL)                                                                                                                                       | 5.07 (159) | 20.34   |
| IIV and IOV                                                                                                                                                                          |            |         |
| ω <sup>2</sup> IIV intercept                                                                                                                                                         | 49.7       | 29.66   |
| ω <sup>2</sup> IOV intercept                                                                                                                                                         | 25.5       | 29.48   |
| Residual error                                                                                                                                                                       |            |         |
| σ <sup>2</sup> (additive)                                                                                                                                                            | 86.9       | 6.08    |
| EC <sub>50</sub> : concentration at which 50% of the maximum effect is achieved, E <sub>max</sub> : maximum effect, IIV: inter-invidual variability, IOV: inter-occasion variability |            |         |

#### (Cmax = 235.9 ng/mL) [2]

**Figure 3.** Model predicted  $\Delta\Delta$ QTcF vs darigabat concentration. Mean (solid), 90% confidence interval (grey area) and 10 ms threshold (dashed).

### Conclusion

- The upper limit of the 90%CI of the simulated ΔΔQTcF reached 10ms at a 3.7-fold higher darigabat concentration than observed at the therapeutic dose of 25 mg QD
- These simulations preclude significant QTc prolongation at clinically relevant darigabat plasma concentrations
- Nickolls, S. A. *et al. Br. J. Pharmacol.* **175**, 708–725 (2018).
   Gurrell, R. *et al. Clin. Pharmacol. Drug Dev.* **10**, 756–764 (2021).
- 3. Cerevel Therapeutics. https://investors.cerevel.com/news-releases/news-releasedetails/cerevel-therapeutics-announces-positive-topline-results (2022).
- 4. Garnett, C. J. Pharmacokinet. Pharmacodyn. 45, 383–397 (2018).

Centre for Human Drug Research | Zernikedreef 8 | 2333 CL Leiden | The Netherlands | Tel +31 71 52 46 400 | info@chdr.nl | www.chdr.nl

