Darigabat Reduces Acute Panic and Fear Symptoms Induced by CO₂ Inhalation in Healthy **Participants**

Rachel Gurrell,¹ Ih Chang,¹ Ann Dandurand,¹ Sridhar Duvvuri,¹ Amy Giugliano,¹ Gina Pastino,¹ Theresa Pham,¹ Stacey Versavel,¹ Gabriel Jacobs,^{2,3} Koshar Safai Pour,² Rob Zuiker,² Raymond Sanchez,¹ John Renger¹

¹Cerevel Therapeutics, Cambridge, MA, USA; ²Centre for Human Drug Research, Leiden, The Netherlands; ³Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands

Presenting Author: Rachel Gurrell; rachel.gurrell@cerevel.com

CONCLUSIONS

- Darigabat exhibited anxiolytic activity at doses of 7.5 and 25 mg BID compared with placebo in the hypercapnia model and was generally well tolerated, with no serious AEs or discontinuations
- Darigabat plasma concentrations and estimated receptor occupancies were dose related and consistent with previous trials¹³
- This study demonstrates the anxiolytic potential of darigabat and supports further evaluation of darigabat in trials of anxiety disorders

ACKNOWLEDGMENTS: This study was supported by Cerevel Therapeutics, LLC. Writing and editorial assistance were provided under the direction of the authors by MedThink SciCom, with funding from Cerevel Therapeutics, LLC. The authors would like to thank all the study participants as well as site personnel, contract research organizations, and Cerevel Therapeutics employees who contributed to this study.

DISCLOSURES: RG, IC, AD, SD, AG, GP, TP, SV, RS, and JR are employees of Cerevel Therapeutics, LLC and may hold stock or stock options in the company. GJ, KSP, and RZ have nothing to disclose.

REFERENCES: 1. Shader and Greenblatt. N Engl J Med. 1993;328:1398-1405. 2. Dias et al. J Neurosci. 2005;25:10682-10688. **3.** Löw et al. Science. 2000;290:131-134. **4.** Makaron et al. Pharmacol Biochem Behav. 2013;104:62-68. 5. McKernan et al. Nat Neurosci. 2000;3:587-592. 6. Rowlett et al. Proc Natl Acad Sci U S A. 2005;102:915-920. 7. Nickolls et al. Br J Pharmacol. 2018;175:708-725. 8. Leibold et al. Transl Psychiatry. 2016;6:e885. 9. Bailey et al. J Psychopharmacol. 2011;25:1192-1198. 10. Fradley et al. J Psychopharmacol. 2007;21:384-391. 11. Knabl et al. Pain. 2009;141:233-238. 12. Ralvenius et al. Nat Commun. 2015;6:6803. **13.** Gurrell et al. *Clin Pharmacol Drug Dev.* 2021;10:756-764.

Presented at American Society of Clinical Psychopharmacology May 31-June 3, 2022 - Scottsdale, AZ

INTRODUCTION

- Darigabat (formerly known as CVL-865 and PF06372865) was rationally designed as a GABA_A positive allosteric modulator that selectively enhances the effect of GABA at $\alpha 2/3/5$ subunits of GABA_A receptors while sparing activity at $\alpha 1^7$
- The CO₂ inhalation challenge is a translational model in early clinical development providing proof of principle for anxiolytic activity and is well established in healthy volunteers and patients with panic disorder^{8,9}
- (VAS) and the Panic Symptom List (PSL)⁸

OBJECTIVE

CO₂ inhalation model of panic and fear in healthy volunteers

Table 1. Effects of BZDs and GABA_A receptor subtypes^{2-6,10-12}

	G	GABA _A receptor subtype			
Effect	α1	α2	α3	α5	
Analgesia		$\checkmark\checkmark$	\checkmark	$\checkmark\checkmark$	
Anxiolysis		$\checkmark\checkmark$	$\checkmark\checkmark$		
Anticonvulsant	$\checkmark\checkmark$	$\checkmark\checkmark$			
Muscle relaxation		$\checkmark\checkmark$	$\checkmark\checkmark$		
Sedation	$\checkmark\checkmark$				
Cognitive impairment	$\checkmark\checkmark$? ª	? a	\checkmark	
Addiction	$\checkmark\checkmark$	\checkmark			
^a Remains uncertain due to a lack of aligned data. BZD, be	nzodiazepine; GABA, γ-aminobut	yric acid.			

Darigabat

25 mg

BID/PBO

n=18

26.4 ± 9.7

23.0

6 (33)

12 (67)

0

0

17 (94)

1 (6)

23.6 ± 3.1

23.2

Alprazolam

1 mg

BID/PBO

n=20

22.9 ± 4.7

20.5

6 (30)

14 (70)

0

1(5)

18 (90)

1 (5)

22.9 ± 2.9

22.4

Overall

N=56

241

56

25.5 ± 7.8

24.0

24 (43)

32 (57)

1 (2)

1(2)

50 (89)

4 (7)

23.1 ± 3.0

22.5

RESULTS

STUDY PARTICIPANTS

• Of 241 screened participants, 56 were randomized and treated; 2 participants in the alprazolam cohort discontinued the trial during Period 2 (2 additional participants were randomized as replacements) (Table 2)

Table 2. Participant Disposition and Baseline Characteristics

Participants, n	Darigaba 7.5 mg BID/PB0 n=18
Screened	-
Randomized	18
Discontinued	0
Adverse event	0
Withdrawal by participant	0
Age at screening, y	
Mean ± SD	27.7 ± 8.0
Median	25.5
Sex, n (%)	
Male	12 (67)
Female	6 (33)
Race, n (%)°	
Asian	1 (6)
Black	0
White	15 (83)
Other or multiple	2 (11)
Body mass index, kg/m ²	
Mean ± SD	23.0 ± 3.
Median	22.4

^aWithdrew during the placebo treatment period due to adverse event of COVID-19 infection. ^bWithdrew during the placebo treatment period. °Racial demographics reflected the local population at the clinical site that conducted this unique translational model. BID, twice daily; PBO, placebo; SD, standard deviation.

ANXIOLYTIC EFFECTS OF DARIGABAT FOLLOWING CO₂ CHALLENGE

- the PSL-IV score following CO₂ challenge on Day 8 (**Figure 3A**)
- 8 based on the VAS Fear score (Figure 3B)

• Benzodiazepines (BZDs) are commonly used to treat anxiety¹; the anxiolytic effects of BZDs are attributed to the $\alpha 2/3$ -containing y-aminobutyric acid A (GABA_A) subunits^{2,3} (**Table 1**)

Many unwanted side effects of BZDs, including sedation, cognitive impairment, and substance dependence, are primarily associated with the $\alpha 1$ GABA_A receptor subtype⁴⁻⁶

Hypercapnia results in increased fear and panic, as measured by visual analog scales

• The objective of the current study was to characterize the anxiolytic effect of darigabat in a

METHODS

- This study was a randomized, double-blind, placebo- and active comparator-controlled, crossover trial comparing darigabat (25 mg twice daily [BID]), darigabat (7.5 mg BID), and alprazolam (1 mg BID) against placebo (Figure 1).
- The primary endpoint was the change in the PSL-IV score from pre-CO₂ to post-CO₂; the secondary endpoint was change in the VAS Fear score from pre-CO₂ to post-CO₂
- Eligible participants were healthy adults aged 18 to 55 years who had a body mass index between 18.5 and 30.0 kg/m², a total body weight of >50 kg, and sensitivity to the anxiogenic effects of 35% CO₂ at screening
- The PSL-IV is a guestionnaire containing 13 items derived from those listed for panic disorder in the Diagnostic and Statistical Manual of Mental Disorders, version 4 (DSM-4); and uses an ordinal scale ranging from 0 (not at all) to 4 (very severe)
- The VAS Fear consisted of a 100-mm horizontal scale, by which participants indicated their fear level from a low of 0 (no fear) to a high of 100 (the most fear possible)
- Participants were randomly assigned to 1 of 2 treatment sequences and attended the clinic for 2 inpatient periods of 9 days each for the CO₂ inhalation challenge (Figure 2), performed ~3 hours after administration of the last dose of treatment on Day 8
- Darigabat doses were titrated over Days 1-4 and maintained at the target dose from Days 5-8
- The PSL-IV and VAS Fear were completed within 1 hour before and within 15 minutes after the CO₂ challenge
- Pharmacokinetic samples were collected approximately 2 and 4 hours after the morning dose on Day 8 (1 hour before and after the CO₂ challenge); plasma concentrations of darigabat were summarized using descriptive statistics, and the 2- and 4-hour concentrations were averaged
- Safety was assessed via adverse event (AE) reporting, standard clinical examinations, vital sign measurements, 12-lead electrocardiogram (ECG), and clinical laboratory assessments

Figure 3. (A) Change in PSL-IV total score and (B) change in VAS Fear relative to placebo on Day 8

BID, twice daily; LS, least squares; PSL-IV, Panic Symptom List IV; SE, standard error; VAS, visual analog scale. P values shown should be considered nominal because no hypothesis testing was planned in the protocol.

DARIGABAT PHARMACOKINETICS AND ESTIMATED RECEPTOR OCCUPANCY

• Plasma concentrations of darigabat were dose related and corresponded with estimated α 2 GABA_A receptor occupancy of ~50% and 80% for the darigabat 7.5- and 25-mg BID doses, respectively (**Table 3**)

Table 3. Darigabat PK and Receptor Occupancy

	Mean (% CV)	Estimated GABA _A receptor occupancy	
Dose	C _{AVG} , ng/mL	Whole brain ^a	α2 ^b
7.5 mg BID	57.3 (60)	77%	50%
25 mg BID	211.0 (43)	85%	76%

 ${}^{a}RO_{MAX} = 88.4\%$; OCC₅₀ = 8.2 ng/mL. ${}^{b}RO_{MAX} = 95.6\%$; OCC₅₀ = 53.2 ng/mL. C_{AVG}, average concentration; CV, coefficient of variance; OCC₅₀, 50% receptor occupancy concentration; PK, pharmacokinetics; RO_{MAX}, maximal receptor occupancy.

SAFETY AND TOLERABILITY OF DARIGABAT

- No serious AEs were reported during the trial (Table 4)
- 97% of AEs reported during darigabat treatment were mild
- The most frequently reported AEs across darigabat treatment groups were dizziness (39%), somnolence (33%), bradyphrenia or slowed thought process (31%), and fatigue (28%)
- In the alprazolam treatment group, the frequencies of these same AEs were as follows: dizziness (15%), somnolence (50%), bradyphrenia (5%), and fatigue (55%)

Both darigabat doses demonstrated anxiolytic effect compared with placebo as assessed by

• Additionally, the darigabat 7.5-mg BID dose attenuated fear induced by CO₂ challenge on Day

Figure 1. Study design schematic.

BID, twice daily

Figure 2. Demonstration of the device used in the CO₂ inhalation challenge

Table 4. Summary of TEAEs

	Number of participants, % ^a				
	Placebo	Alprazolam	Darigabat		
	(combined) (N=56)	1 mg BID (N=20)	7.5 mg BID (N=18)	25 mg BID (N=18)	
Any TEAE, n (%)	28 (50)	18 (90)	13 (72)	17 (94)	
Mild	26 (46)	18 (90)	12 (67)	16 (89)	
Moderate	1 (2)	0	1 (6)	1 (6)	
Severe	1 (2)	0	0	0	
Serious TEAE, n (%)	0	0	0	0	
TEAE leading to discontinuation	1 (2)	0	0	0	
TEAE related to treatment	15 (27)	17 (85)	13 (72)	17 (94)	

^aThe number of participants with at least 1 AE reported. AE, adverse event; BID, twice daily; TEAE, treatment-emergent AE.